skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sutherland, Alexander J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resolvent degree is an invariant measuring the complexity of algebraic and geometric phenomena, including the complexity of finite groups. To date, the resolvent degree of a finite simple group G has only been investigated when G is a cyclic group; an alternating group; a simple factor of a Weyl group of type E6, E7, or E8; or PSL(2,F7). In this paper, we establish upper bounds on the resolvent degrees of the sporadic groups by using the invariant theory of their projective representations. To do so, we introduce the notion of (weak) RDk≤d-versality, which we connect to the existence of “special points” on varieties. 
    more » « less